SOLUTION OF STATISTICAL PROBLEMS IN ELASTICITY
THEORY IN THE SINGULAR APPROXIMATION

A. G. Fokin UDC 539.32+518.6

A method of calculating elastic fields and effective moduli of microheterogeneous solids is de~
veloped in the random field theory. The solution is obtainedinthe form of an operator series,
each term of which is constructed on the basis of the regular component of the second deriv-
ative tensor of the equilibrium Green function. The zeroth approximation of sucha series con-
sists of the local part of the interaction between inhomogeneity grains. The possibilities of
the method are illustrated on the example of an isotropic mixture of twoisotropic components.

One of the main problems of the elasticity theory of microheterogeneous bodies is to find the tensors
of effective elastic moduli and of elastic fields of statistically homogeneous media. In solving this problem
both classical methods of elasticity theory [1-3] and methods of random field theory [4-9] may be used.

The presence of interactions between grain inhomogeneities puts the problem mentioned in the class
of well-known multiparticle problems, whose exact solution may be found only in the simplest cases. Inthis
connection it is of interest to develop approximate methods of calculating elastic properties of inhomogene-
ous materials [1-10], using the characteristics of the simplified problem with the purpose of solving it to
the end.

Three methods provide the highest accuracy, the seli-consistent [2, 10], the variational [3], and the
random field method [4-9]. The latter underwent several modifications, of which the Bolotin—Kroner [6, 9]
model allows the most transparent physical interpretation.

Despite the difference between the methods mentioned, the approximate effective elastic moduli, ob-
tained by them, can be reduced to an identical analytic form. This fact underlies the idea of their being sim-
ilar in principle,

In this paper we develop a unified approach to solving the problem of describing inhomogeneous elas-
tic media, satisfying equilibrium equations. This method can be extended to solve other problems without
particular difficulty [5].

1. Let the statistical homogeneity of the infinite medium under consideration be characterized by an
elastic moduli tensor Ajjki (r). The field of this tensor will obviously possess a constant average value and
a random component. We introduce besides a reference field whose elastic properties are characterized
by some homogeneous tensor A%jkl‘

The fields uj and ui°, corresponding to both elastic moduli tensors, satisfy the equations
Ly = —fiy Lix = Vihijiu Vi, Lig w® = — i, Li® = Vihiju®V, 1.1)
where fj is the vector density of bulk forces.

The problem consists of finding the tensors of deformation &;; =Y, (Viuj+vjui) =u(, j) and of effective
elastic moduli )‘{Ekl' The latter determines the average deformation < gjj > = <ug, j) > by tke equation

Lyugy = — fiy Ly = V¥, 1.2)
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The angular brackets denote ensemble averaging, which for ergodic fields coincides with volume aver-
aging.
Denoting by primes the excess with respect to the reference body functions, we find from (1.1)
Liguy’ = — Ly, Lig = Lig — Ligy, g’ = g — u® 1.3)
The solution of (1.3) by means of the Green tensor Gjj of the operator Ljy is of the form
Uy = Gik*L;czléz 1.4)
where the star denotes the integral convolution operation.
For the excess deformation we have from (1.4)
& = Ugs, y = G, 3¢ Meimn®onn (1.5)

Using the ideas of the generalized functions theory, we write down the second derivative of the Green
tensor as a sum of singular and regular parts [4}]

G, 1 = Gk, it + Gl 0 (1.6)
We introduce the tensor gijki and the integral operator p; jki
gl = Gy o *Fr  PiwiF = G F (L.7)

where F is an arbitrary function.

The first of relations (1.7) is possible due to the fact that the coordinate part of G?k il is 6 (r). Be-
sides, in what follows we omit the tensor indices, regarding second-rank tensors as vectors and fourth-rank
tensors as square matrices in six-dimensional space [11].

It is easily seen that by means of (1.7) Eq. (1.5) can be transformed to the form
e=¢ fple, e== (1 —gh)e (1.8)
The tensor 1 is defined by
Fle(h—h)t — g (1.9)

The advantage of (1.8) over (L.5) is that its main part, related to the singular derivative of the Green
tensor, is separated from the term describing the nonlocal part of the interactions between grain inhomo-
geneities. .

Egs. (1.8) and (1.9) allow us to determine the tensors of effective elastic moduli A " and of the field de-
formation ¢. Indeed, from (1.8) and (1.9) we have

le = (A — No) & (L.10)
which after averaging gives
Led = {ley = (b — hp)ed = (hy — Ry) <& 1.11)

In view of the analytic identity of (1.10) and (1.11), and accounting for the relation between <e > and
< ¢ >following from definition (1.8), the connection between the effective tensors 1, and A, is described by
Eq. (1.9).

1t is not hard to see from (1.8) that the field e can be represented in the form

e=1(1—phte, =3 (ph"e, (1.12)
Averaging (1.12), we obtain
e =<1 —ph"> e (1.13)
Eliminating the field g4 from (1.12) and (1.13), we find
e = (1 —ph) <1 — ph™)7 (e 1.14)
Substituting (1.14) in (1.11) gives
Ly = <L (4 — py™> <1 — ph™7 (1.15)
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2. Despite their formal simplicity, the solutions (1.14) and (1.15) represent operator series [4, 5], re~
quiring for their evaluation the values of multipoint moment functions of elastic constants. Since the mathe-
matical difficulty in obtaining high-order approximations is considerable, and modelling does not yet pro-
vide adequate representation of microheterogeneous media, it is customary to restrict the discussion to low-
est order approximations in operator series of type (1.14) and (1.15).

Consider the singular approximation which consists of neglecting the interactions between inhomoge-
neity elements related with the operator p, which takes into account the deviation of the field ¢ at a given
point from its average over the grain.

This corresponds to the zeroth approximation in Eqs. (1.14) and (1.15), havin_ the form
es = &), ls =) {2.1)

where the index 8 denotes that the field e and the tensor I, are evaluated in the singular approximation. The
field eg is easily found from definition (1.8)

gg = (1 — gAY leg {2.2)
Averaging (2.2) and eliminating eg, we obtain
gs = (1 — gM)™ (1 — gM)y™H <) 2.3)
By means of Eq. (2.3) the effective elastic moduli tensor A, is determined by the equation
(hey = My <) (2.4)
and has the form
hg = (b (1 — gh)) (1 — gy (2.5)
Expression (2.5) can also be obtained directly from (1.9), replacing I and A by Ig and As.
Introducing the vectorial tensor by, satisfying the relation
g +b) = —1 (2.6)
Eqgs. (2.3) and (2.5) are simplified and are reduced to the form
gg = (b 4 bo) KA + bo) )7 &> = As<ed, (hs +Bg)™" = (A + b)) (2.7)

Since generalized functions, and, consequently, their derivatives, are domain functions restricting the
region of coordinates [12], the tensors g and b, must depend on the shapes of the surfaces of these domains.
For the domain mentioned we choose the effective grain, over which the ensemble averaging of the inhomo-
geneity grain should be performed.

Let the effective grain be an ellipsoid with major axes ay, a4, ag in a Cartesian coordinate system, and
let the tensor A, be isotropic. The tensor g will then have the crystal symmetry of an orthorhombic system
[11] and will be written in the form

— Wi = Syl — %im, A= %_%% (2.8)

Here Aq and uy are the Lame constants, determining the tensor Aijkls and the components of the ten-
sors Jij and Jjjk; are defined by the integral [7]

1 m2dQ
Tu= e \Tagam m=nlT
1 12
1 7L14dQ 1 n12n22d£2
Jun = Tl SW v Jum prpp S a5y (2.9)

where dQ is the solid angle element,

The remaining components of the tensors Jij and Jijkj are obtained by corresponding index permuta-
tions. In the case under consideration the depolarization tensor Jij can be expressed in terms of elliptic
integrals [13], and the tensor J ijk? in terms of their derivatives.

Egs. 2.7)-(2.9) are the singular approximation solutions of the problem of finding the deformation
field and the effective elastic moduli of a microheterogeneous medium. The solution obtained allows the
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checking of various structures: mixtures whose components can possess arbitrary symmetry, multiphase
polycrystals, mechanical and orientational textures. In the given approximation, however, no distinction is
made between matrix and statistical mixture, which is related to neglecting elastic field inhomogeneities
inside grains. The latter is, obviously, very sensitive to the distribution of elastic fields in adjacent grains.

3. As an example we consider nontexturized, mechanical mixtures of two isotropic components. In
this case the effective grain is of spherical shape, and the tensors Jijj and Jjjk; equal
Jig =Ysbis,  Jiser =YsVismr + *15Disna (3.1)
Vijer = 8i8k1,  Vigrr + Dijrr = 8By 5
Substituting (3.1) into (2.8) and using (2.6), we find an explicit form of the tensor bijki

bigwt = 3boVisur + 2doDijy (3.2)
9K - 8
8y = dtty, =K1 SpUEY 3K, — 3h + 20,

Since the symmetry of the tensors Aijkb Aijk;’ and bijkci is the same, Eq. (2.7) is easily calculated, and
together with (3.2) it leads to the result

Kg+b
K 4 bo

Wg -+ do
b+ do

Mok = 3K Vi + 2usDijmt

A = Vi + D1 (3.3)

where Kg and g are of the form

Dy _ Dp.
c1Ks+ esK13-bo ? ps = (p) — ez - capa -+ do
D, = eieq (1 — 75)? (3.4)

Kg=<(K)—

and the indices 1 and 2 denote the number of the component.

Since the quantities b,y and d; are determined from the Lame constants Ay and p, of the reference body,
expressions (3.3} and (3.4) are also functions of Ay and 1. Assigning to them different values, we obtain the
results of the approximate methods discussed above. We restrict the discussion to the analysis of Eq. (3.4).

Let Ky and p ¢ obtain the following values:

a) Kg=Kg, po=pg; b) Kot =Ky, pgt=jip, Ko™ =Ky, ug~ = pq, under the conditions K; <Ky, py<pg; ¢) KW=
<K >, uYy= <p> Kpl= U/K>=! pl=<1/p>"1,

Substituting them in (3.4) gives the effective elastic moduli of the self-consistent approximation [2, 10]
in case (a), the Hashin—Shtrikman bounds obtained by means of variational principles [3] in case (b), and the
approximate values found by the random field theory [4, 5, 8] in case (c).

Similar results can also be obtained in considering more complicated types of microheterogeneous
media.
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