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A method of calculating elastic fields and effective moduli of microheterogeneous solids is de- 
veloped in the random field theory. The solution is obtained in the form of an operator series, 
each term of which is constructed on the basis of the regular component of the second deriv- 
ative tensor of the equilibrium Green function. The zeroth approximation of such a series con- 
sists of the local part of the interaction between inhomogcneity grains. The possibilities of 
the method are illustrated on the example of an isotropic mixture of two isotropic components. 

One of the main problems of the elasticity theory of microheterogeneous bodies is to find the tensors 
of effective elastic moduli and of elastic fields of statistically homogeneous media. In solving this problem 
both classical methods of elasticity theory [1-3] and methods of random field theory [4-9] may be used. 

The presence of interactions between grain inhomogeneities puts the problem mentioned in the class 
of well-known multiparticle problems, whose exact solution may be found only in the simplest cases. Inthis 
connection it is of interest to develop approximate methods of calculating elastic properties of inhomogene- 
ous materials [i-i0], using the characteristics of the simplified problem with the purpose of solving it to 
the end. 

Three methods provide the highest accuracy, the self-consistent [2, i0], the variational [3], and the 
random field method [4-9]. The latter underwent several modifications, of which the Bolotin-Kroner [6, 9] 
model allows the most transparent physical interpretation. 

Despite the difference between the methods mentioned, the approximate effective elastic moduli, ob- 
tained by them, can be reduced to an identical analytic form. This fact underlies the idea of their being sim- 
ilar in principle. 

In this paper we develop a unified approach to solving the problem of describing inhomogeneous elas- 
tic media, satisfying equilibrium equations. This method can be extended to solve other problems without 
particular difficulty [5]. 

i. Let the statistical homogeneity of the infinite medium under consideration be characterized by an 
elastic moduli tensor kijkl (r). The field of this tensor will obviously possess a constant average value and 
a random component. We introduce besides a reference field whose elastic properties are characterized 
by some homogeneous tensor k~jkl. 

The fields u i and ui ~ corresponding to both elastic moduli tensors, satisfy the equations 

Li~u~ = --:[i,  L ~  = ~i)~ii~ Vl, L~ u~ ~ = - -  ]i, Li~ ~ = Vj~ij~l~ (1.1) 

w h e r e  fi i s  t he  v e c t o r  d e n s i t y  of b u l k  f o r c e s .  

The  p r o b l e m  c o n s i s t s  of f i n d i n g  the  t e n s o r s  of d e f o r m a t i o n  8i j  = l /2 (Viu j  + V j u i )  =u ( i ,  j) and  of e f f e c t i v e  

e l a s t i c  m o d u l i  k ~ k  / . The  l a t t e r  d e t e r m i n e s  the  a v e r a g e  d e f o r m a t i o n  < ci j  > = < u ( i  ' j) > by  @e e q u a t i o n  

Li~ <uk> = - -  [i, Li~ = Vikij~l (i.2) 
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The angu la r  b r a c k e t s  denote ensemble  averag ing ,  which for  e rgod ic  f ields coinc ides  with volume a v e r -  
aging.  

Denoting by p r i m e s  the e x c e s s  with r e spec t  to the r e f e r e n c e  body funct ions,  we find f r o m  (1.1) 

L~;u~'  = - -  L ~ . ~ ,  L ~  : L,~  - -  n s  ~ '  = u~ - -  u~ o ( 1 . 3 )  

The solut ion of (1.3) by m e a n s  of the Green  t e n s o r  Gik of the o p e r a t o r  Lik is of the f o r m  

ui '  = Gi~* L'~zu~ (1.4) 

where  the s t a r  denotes  the in tegra l  convolut ion opera t ion.  

F o r  the e x c e s s  de fo rma t ion  we have f r o m  {1.4) 

Using the ideas  of the g e n e r a l i z e d  funct ions  theory ,  we wr i te  down the second der iva t ive  of the Green  
t e n s o r  as  a sum of s ingu la r  and r e g u l a r  p a r t s  [4] 

G~. iz s I (1.6) 

We in t roduce  the t e n s o r  g i j k / a n d  the in teg ra l  o p e r a t o r  Pijk/ 

s (1.7) g~i~zF = G~) (~, l) ( j ,  F ,  p i i~ lF  = G~) (~. z) ( j , F  

where  F is an  a r b i t r a r y  function.  

The f i r s t  of r e l a t ions  (1.7) is poss ib le  due to the fac t  that  the coord ina te  pa r t  of G~i b i l  is 6 (r). Be -  
s ides ,  in what  fol lows we omit  the t e n s o r  indices,  r e g a r d i n g  s e c o n d - r a n k  t e n s o r s  as  v e c t o r s  and f o u r t h - r a n k  
t e n s o r s  as  square  m a t r i c e s  in s i x -d imens iona l  space  [11]. 

It is  ea s i ly  seen  that  by m e a n s  of (1.7) Eq. (1.5) can be t r a n s f o r m e d  to the f o r m  

e----s ~ + p l e ,  e ~ -  ( t - - g ~ ' ) 8  (1.8) 

The t e n s o r  l is defined by 

1-1 -- (~ -- XO) -1 -- g (1.9) 

The advantage of (1.8) over (1.5) is that its main part, related to the singular derivative of the Green 
tensor, is separated from the term describing the nonlocal part of the interactions between grain inhomo- 

geneities. 

Eqs. (1.8) and (1.9) allow us to determine the tensors of effective elastic moduli X, and of the field de- 

formation e. Indeed, from (1.8) and (1.9) we have 

le  = (L - -  Lo) e ( i . i 0 )  

which a f t e r  ave rag ing  gives 

l , < e >  = <le> : <(~ - -  ~o)e> : (X, - -  ~'o) <e> ( i . i i )  

In view of the analytic identity of (i.i0) and (i.ii), and accounting for the relation between <e > and 
< e >following from definition (1.8), the connection between the effective tensors l, and X. is described by 

Eq. (1.9). 

It is not hard to see from (1.8) that the field e can be represented in the form 

e = ( t  - -  p l )  -z  eo = y' (p/)neo 

Averag ing  (1.12), we obtain 

<e> ~--- <( t  - -  p / ) - l >  8o 

El imina t ing  the field G0 f r o m  (1.12) and (1.13), we find 

e = (i - -  p l )  - i  <(1 - -  p/)-i>-I <e> 

Subst i tut ing (1.14) in (1.11) g ives  

l ,  = <l (l - -  p l ) - i>  <(i -- p/)-x>-i 

(1.12) 

(1.13) 

(I_ .14) 

(1.15) 
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2. Despite their  formal  simplicity, the solutions (1.14) and (1.15) represent  opera tor  ser ies  [4, 5], r e -  
quiring for  the i r  evaluation the values of multipoint moment functions of e last ic  constants.  Since the mathe-  
matical  difficulty in obtaining h igh-order  approximations is considerable, and modelling does not yet p ro-  
vide adequate representa t ion of microheterogeneous  media, it is cus tomary  to r e s t r i c t  the discussion to low- 
est  o rde r  approximations in opera to r  se r ies  of type (1.14) and (1.15). 

Consider  the singular approximation which consis ts  of neglecting the interact ions between inhomoge- 
neity elements related with the opera tor  p, which takes into account the deviation of the field a at a given 
point f rom its average over  the grain.  

This corresponds  to the zeroth approximation in Eqs.  (1.14) and (1.15), having the form 

es = (e), Is = (/> (2.1) 

where the index S denotes that the field e and the tensor  l .  are evaluated in the singular approximation. The 
field eS is easi ly found f rom definition (1.8) 

ss = (t - -  g~,)-i es (2.2) 

Averaging (2.2) and eliminating es, we obtain 

es = (t -- g~,)-i <(1 -- g)~,)-1)-1 (e) (2.3) 

By means of Eq. (2.3) the effective elast ic moduli tensor  X. is determined by the equation 

@e> = ~. <e) (2.4) 

and has the form 

Es = <~ (i -- g)~')-'> ((I -- g)~')-')-! (2.5) 

Expression (2.5) can also be obtained directly from (1.9), replacing l and A by Z S and :k S. 

Introducing the vectorial tensor b0, satisfying the relation 

g ()~0 ~- bo) = - -  I (2.6) 

Eqs.  (2.3) and (2.5) a re  simplified and are  reduced to the form 

as = (~, + b0)-~<(~, -4- b0)-t) -~ <e) = A,s <e), (~s +b0) -~ = <()~ + b0)-l) (2.7) 

Since general ized functions, and, consequently, their  derivatives,  are domain functions res t r ic t ing  the 
region of coordinates [12], the tensors  g and b 0 must  depend on the shapes of the surfaces  of these domains. 
Fo r  the domain mentioned we choose the effective grain, over  which the ensemble averaging of the inhomo- 
geneity gra in  should be per formed.  

Let the effective gra in  be an ellipsoid with ma jo r  axes al, a2, a 3 in a Car tes ian coordinate system, and 
let the tensor  X 0 be isotropic.  The tensor  g will then have the c rys ta l  symmet ry  of an or thorhombic sys tem 
[11] and will be wri t ten in the fo rm 

;~o Jr ~ (2 .8)  

Here X0 and #0 are  the Lame constants,  determining the tensor  )tijkl , and the components of the ten- 
sors  Jij and J i j k / a r e  defined by the integral  [7] 

t I nl2d~ 

f l l l l =  �9 t . ~ nl4d~ ~gal  4 ~ * ( ) ? ~ ) 2  , J l122 -~- - -  

where d~2 is the solid angle element. 

nl = ri / r 

t I nl~n~2df~ 
4~al~a~ 2 (Zni2ai-2) 2 

(2.9) 

The remaining components of the tensors  Jij and J i j k / a r e  obtained by corresponding index permuta-  
tions. In the case under considerat ion the depolarizatfon tensor  Jij can be expressed in t e r m s  of elliptic 
integrals  [13], and the t ensor  Jijkl in t e r m s  of their  der ivat ives .  

Eqs.  (2.7)-(2.9) are  the s ingular  approximation solutions of the problem of finding the deformation 
field and the effective elast ic  moduli of a microheterogeneous  medium. The solution obtained allows the 
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checking of var ious  s t ruc tures :  mix tures  whose components can possess  a rb i t r a ry  symmetry ,  multiphase 
polycrys ta ls ,  mechanical  and orientational  tex tures .  In the given approximation, however, no distinction is 
made between mat r ix  and s ta t is t ical  mixture,  which is re la ted to neglecting elast ic  field inhomogeneities 
inside grains .  The l a t t e r  is, obviously, ve ry  sensit ive to the distr ibution of e las t ic  fields in adjacent grains.  

3. As an example we consider nontexturized, mechanical mixtures os two isotropic components. In 
this case the effective grain is of spherical shape, and the tensors Jij and Jijk/equal 

Jii  : 1/~81i, J~i~l = 1/sV~J~ + ~/l~DiJ~l (3.1) 

3V~i~t = 81i8~t, Vii~l + Dii~z = ~i (~6z) i 

Substituting (3.1) into (2.8) and using (2.6), we find an explicit  fo rm of the tensor  bijk~ 

b~t  : 3boV~ikz + 2doDiikl (3.2) 

3bo=4~to, do= II~ 9Ko+81~o 3Ko=3~o+2~to 
6 Ko + 2~0 ' 

o 
Since the symmet ry  of the t ensors  )tijk/, )tijkl, and b i j k / i s  the same, Eq. (2.7) is easi ly calculated, and 

together  with (3.2) it leads to the resul t  

S K s + b~ _~_ ~S + do 
A~i~ : ~ V~i~ ~ Di~z (3.3) 

k s  : 3KSV~i~ + 2~tsD~ 

where K S and PS a re  of the fo rm 

D K Di.~ 
Ks : <K> - -  clK2+c2Kl_l_bo , ~s  = <l ,L) cll~_l_c2tLl+do 

D~: = clc ~ (x 1 - -  x~) 2 (3.4) 

and the indices 1 and 2 denote the number  of the componefit. 

Since the quantities b 0 and d o are  determined f rom the Lame constants )t0 and #0 of the r e fe rence  body, 
expressions (3.3) and (3.4) are also functions of )to and ~0. Assigning to them different values, we obtain the 
results of the approximate methods discussed above. We restrict the discussion to the analysis of Eq. (3.4). 

Let K 0 and P0 obtain the following values: 

a) K0= KS, p o = PS; b) K0+=K2, #0 +=/22, K0-= K 1, po - =  #1, under the conditions K 1 <K2, Pl < ~2; c) KU0= 
<K>,gu0  = <#>; Kol= 1 / K > - l ,  p o l = < l / # >  -1 

Substituting them in (3.4) gives the effective elast ic  moduli of the se l f -consis tent  approximation [2, 10] 
in case (a), the Hash in -Sh t r ikman  bounds obtained by means  of var ia t ional  pr inciples  [3] in case (b), and the 
approximate values found by the random field theory  [4, 5, 8] in case (c). 

S imi lar  resu l t s  can also be obtained in considering more  complicated types of microheterogeneous  
media.  
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